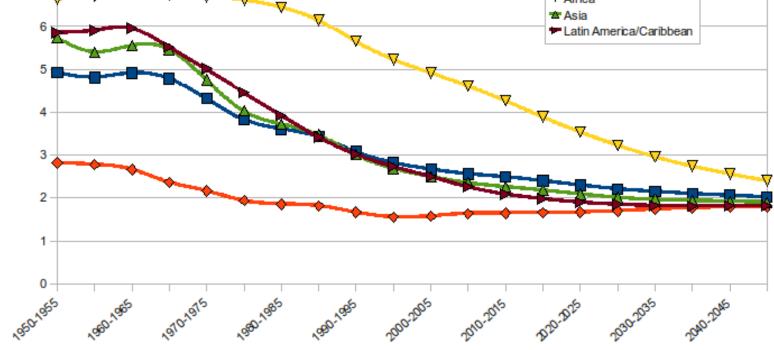


Tireopatie e infertilità

Guia Vannucchi

g.vannucchi@auxologico.it

Istituto Auxologico Italiano, Milano


Disclosure statement

Roma, 9-12 novembre 2017

Nessun conflitto di interessi

Infertilità

Colpisce il 15% di coppie in età riproduttiva (circa 6 milioni di coppie)

0,8-4,1% dei bambini nati in Europa sono nati da procedure di PMA

De Mouzon, 2010 Registro Europeo

Roma, 9-12 novembre 2017

Numero totale di **74.292** coppie trattate **95.110** cicli di trattamento nel 2015, **12.836** nati vivi (2.6% del totale dei bimbi nati nel 2015)

Registro nazionale Procreazione medicalmente assistita (PMA) dell'Istituto superiore di sanità

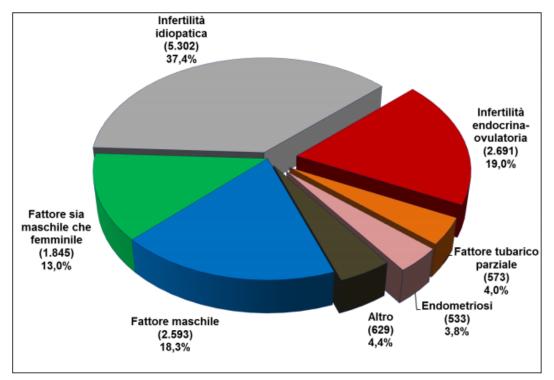


Figura 3.2.1.: Distribuzione delle coppie trattate con Inseminazione Semplice senza donazione di gameti, secondo le cause di infertilità. Anno 2015. (in parentesi è espresso il numero di coppie in valore assoluto). (<u>14.166 coppie</u>)

Roma, 9-12 novembre 2017

Registro nazionale Procreazione medicalmente assistita (PMA) dell'Istituto Superiore di Sanità

PMA

Insieme di tutti quei trattamenti per la fertilità nei quali i gameti, sia femminili (ovociti) che maschili (spermatozoi), vengono trattati al fine di determinare il processo riproduttivo.

Tecniche di primo livello

Inseminazione Intra-uterina semplice (HIUI homologous intra uterine insemination) con seme del partner

Tecniche di secondo e terzo livello

FIVET (fecondazione in vitro embrio transfer)

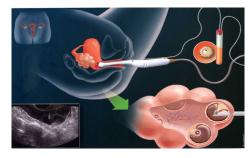
ICSI (iniezione intra-citoplasmatica di un singolo spermatozoo)

Blanda stimolazione ovarica mediante somministrazione di clomifene citrato (os) ed hCG (i.m.)

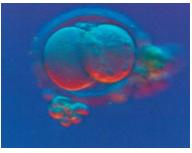
0.2-0.5 ml sospensione di sperma processato introdotto nella cavità uterina

INSEMINAZIONE IN VITRO: FIVET-ICSI

Roma, 9-12 novembre 2017

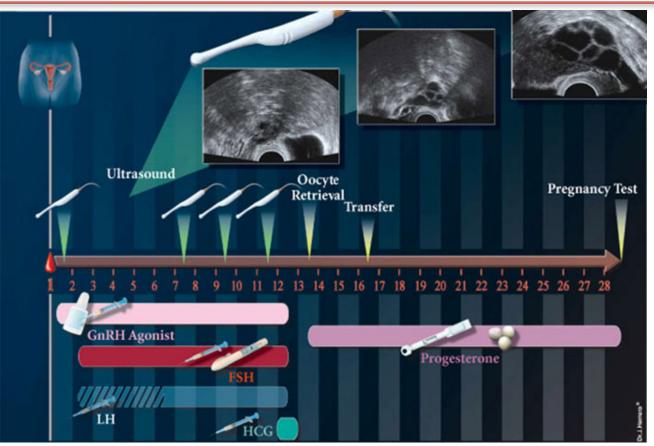


Biopsia dell'embrione


Pick-up oociti

Transfer dell'embrione

Coltura in vitro degli embrioni



Verifica dello stato di gravidanza

Stimolazione ovarica

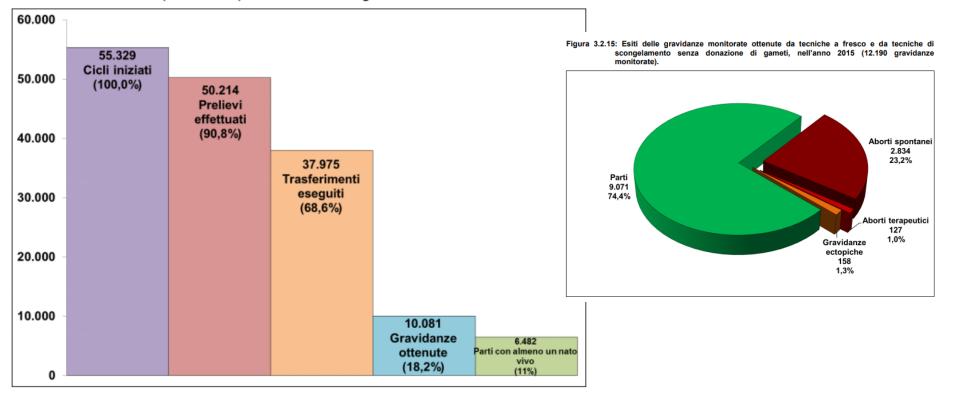
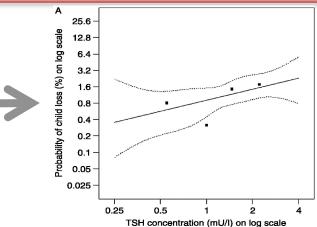

Roma, 9-12 novembre 2017

Figura 2: Cicli iniziati, prelievi effettuati, trasferimenti eseguiti e gravidanze ottenute, su tecniche a fresco di II e III livello (FIVET e ICSI) senza donazione di gameti nel 2015.


Ipotiroidismo e aborto

Aumento del rischio di aborto del 60% per ogni raddoppiamento dei livelli di TSH

TABLE 2. Clinical characteristics of pat	TSH < 2.		TSH tra 2.5	5-5 mU/L
	Group A Pregnancy loss (n = 127) (3.6%)	(n = 3481) No pregnancy loss (n = 3354) (96.4%)		8 (n = 642) No pregnancy loss (n = 603) (93.9%)
Age (yr) Previous babies (n) Smoking (%) First gynecological visit (wk) Week of pregnancy loss TSH first trimester (mlU/liter), median (interguartile range)	31.7 ± 3.1 88 (69.3%) 1 (0.8%) 8.9 ± 1.5 11.7 ± 3.7 0.72 (0.30-1.33)	28.5 ± 5.0 2359 (70.3%) 184 (5.5%)* 8.8 ± 1.6 0.82 (0.36-1.40)	31.3 ± 2.4 28 (71.8%) 0 (0.0%) 8.8 ± 1.5 11.8 ± 3.6 3.29 (2.79–3.61)	29.0 ± 5.2 430 (71.3%) 38 (6.3%) 8.9 ± 1.5 3.14 (2.79–3.43)
(inter quartier range) Free T ₄ first trimester (pmol/liter) Family history of thyroid disease (%) Goiter (%) Symptoms of hypo-/hyperthyroidism (%) Type 1 diabetes/autoimmune disease (%) Irradiation (%) Previous miscarriage/preterm deliveries (%)	12.4 ± 2.2 13 (10.2%) 0 (0%) 7 (5.5%) 0 (0%) 0 (0%) 3 (2.4%)	12.2 ± 2.1 430 (12.8%) 29 (0.9%) 260 (7.7%) 34 (1%) 1 (0.03%) 47 (1.4%)	$\begin{array}{c} 9.9 \pm 2.4 \\ 7 (17.9\%) \\ 0 (0\%) \\ 3 (7.7\%) \\ 0 (0\%) \\ 0 (0\%) \\ 0 (0\%) \\ 0 (0\%) \end{array}$	$\begin{array}{c} 10.6 \pm 2.1 \\ 57 (9.4\%) \\ 4 (0.7\%) \\ 42 (7\%) \\ 6 (1\%) \\ 1 (0.2\%) \\ 9 (1.5\%) \end{array}$

Demographic information, pregnancy history, clinical information, thyroid function tests, and mean week of pregnancy loss are broken down by group and whether pregnancy loss occurred. Group A TSH levels are below 2.5 mlU/liter; group B TSH levels are between 2.5 and 5.0 mlU/liter.

Benhadi, 2009

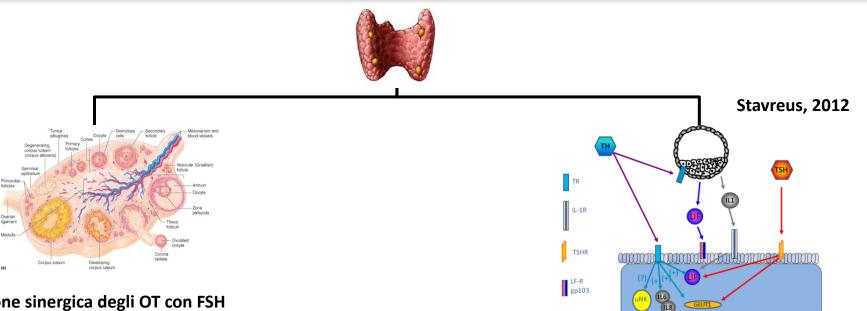
Negro, 2010

^a P < 0.05 for comparison between miscarriage and no miscarriage subgroups within group)

Roma, 9-12 novembre 2017

PLOS ONE		Experim	ental	Cont	rol		Risk Ratio	Risk Ratio
	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% Cl
	1.1.1 ATA diagnosis	group						
	casey 2007	6	598	79	16011	4.6%	2.03 [0.89, 4.64]	
	jacob 2012	33	263	25	533	13.5%	2.68 [1.63, 4.40]	
	liu 2014	54	959	43	1961	23.1%	2.57 [1.73, 3.80]	
	negro 2010	39	642	127	3481	32.3%	1.67 [1.17, 2.36]	
	wang 2012	26	168	48	542	18.6%	1.75 [1.12, 2.73]	
	Subtotal (95% CI)		2630		22528	92.1%	2.07 [1.70, 2.53]	•
	Total events	158		322				
	Heterogeneity: Chi ² = 4	1.23, df = 4	(P = 0.3)	8); l ² = 5%	%			
	Test for overall effect:	Z = 7.21 (P	< 0.000	01)				
	1.1.2 Specific diagno	sis group						
	chen 2014	2	371	21	7641	1.6%	1.96 [0.46, 8.33]	
	cleary-goldman 2008	1	240	60	10021	2.3%	0.70 [0.10, 5.00]	
	mannisto 2009	1	224	24	4719	1.8%	0.88 [0.12, 6.46]	
	sahu 2010	1	41	7	552	0.8%	1.92 [0.24, 15.26]	
	su 2011	2	41	19	845	1.4%	2.17 [0.52, 9.00]	
	Subtotal (95% CI)		917		23778	7.9%	1.38 [0.65, 2.96]	+
	Total events	7		131				
	Heterogeneity: Chi ² = '	.37, df = 4	(P = 0.8)	5); l ² = 09	%			
	Test for overall effect:	Z = 0.84 (P	= 0.40)					
	Total (95% CI)		3547		46306	100.0%	2.02 [1.67, 2.45]	•
	Total events	165		453				
	Heterogeneity: Chi ² = 6	6.05, df = 9	(P = 0.7)	4); $I^2 = 0^9$	%			
	Test for overall effect:							0.01 0.1 1 10

Aumento del rischio di aborto di 1.9 volte se TSH > 2.5 mU/L



PMA

Tiroide

Azione sinergica degli OT con FSH OT: esercitano effetti stimolatori diretti sulla funzione delle cellule della granulosa, come la differenziazione morfologica e la formazione del recettore LH/hCG

Aghajanova, 2009

A livello endometriale sono presenti recettori per ormoni tiroidei e TSH ed aumentano nella fase recettiva

OT: ruolo fondamentale durante l'impianto e i primi stages dello sviluppo embrionale

Tiroide e IUI

Roma, 9-12 novembre 2017

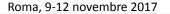
Table 2 Univariate and multivariate analysis

	Pregnancy	No pregnancy	Univariate ar	alysis	Multivariate a	nalysis
	(N = 37)	(N = 503)	OR (95% CI) ^a	р	OR (95% CI) ^a	р
Age (years) ^b	30 (30-35)	34 (29-39)	0.92 (0.87;0.98)	0.015 ^d	0.94 (0.87;0.99)	0.049 ^d
Body mass index (kg/m²) ^b	20.9 (19.9-27.0)	22.9 (20.4-26.0)	1.02 (0.93;1.07)	0.931	-	-
Primary infertility (vs. secondary infertility) ^c	19 (51.4)	258 (51.3)	1.00 (0.95;1.05)	0.861	-	-
Parity ^c	0 (0-1)	0 (0-0)	1.01 (0.60;1.71)	0.954	-	-
TSH (μIU/mI) ^b	1.6 (1.1-2.2)	1.9 (1.2-2.4)	0.89 (0.46;1.21)	0.556	-	-
TPO-Ab > upper level of normal ^c	0 (0)	61 (12.1)	0.07 (0.05;0.10)	0.015 ^d	0 (0;inf)	0.997
TG-Ab > upper level of normal ^c	2 (5.4)	105 (20.9)	0.22 (0.05;0.91)	0.037 ^d	0.87 (0.19;4.03)	0.861
Thyroid medication for overt hypothyroidism ^c	2 (5.4)	95 (18.9)	0.25 (0.06;1.04)	0.036 ^d	0.54 (0.12;2.47)	0.338
Thyroid medication TSH > 2.5 μlU/ml ^c	16 (43.2)	55 (10.9)	6.94 (3.60;13.40)	< 0.001 ^d	3.31 (1.31;8.35)	0.009 ^d
Presence of PCO-S ^c	8 (21.6)	81 (16.1)	0.71 (0.31;1.60)	0.407	-	-
Metformin treatment ^b	3 (8.1)	31 (6.2)	1.34 (0.31;4.92)	0.500	-	-
Clomifen citrate stimulation ^c	19 (51.4)	146 (29.0)	0.39 (0.20;0.77)	0.006^{d}	0.77 (0.32;1.85)	0.629
Number of IUI treatment cycle ^b	1 (1-1)	1 (1-1)	0.90 (0.59;1.37)	0.638	-	-
Ovulation induction with HCG ^c	27 (73.0)	239 (47.5)	2.95 (1.40;6.22)	0.005 ^d	5.37 (1.72;16.69)	0.004^{d}
Endometrial thickness ^b	10 (8-11)	8 (9-10)	1.09 (0.91;1.31)	0.324	-	-
Male factor ^c	13 (35.1)	269 (53.5)	0.47 (0.23;0.95)	0.034 ^d	0.60 (0.27;1.03)	0.067

Jatzko et al, Reprod Biol & Endocroinol, 2014

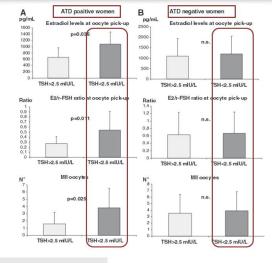
Tiroide e IUI

Adjusted means of secondary outcomes by TSH group, for women undergoing IUI cycles at a fertility center.


Variable	Number of observations	TSH 0.40-2.49 mlU/L	TSH 2.50-4.99 mIU/L	P value
Total gonadotropin dose (units/ml)	2,860	902 (858–946)	888 (810–966)	.77
Peak estradiol (pg/ml, day before hCG)	1,427	347 (335–359)	360 (340–380)	.27
Peak estradiol (pg/ml, day of hCG)	1,274	510 (491–528)	507 (478–535)	.86
Number of preovulatory follicles (\geq 13 mm)	3,943	1.9 (1.9–2.0)	1.9 (1.8–2.0)	.67
Day of hCG trigger	3,975	11.3 (11.2–11.4)	11.3 (11.1–11.5)	.99
Endometrial lining thickness (mm)	3,930	8.2 (8.1–8.3)	8.2 (8.0–8.4)	.95

Note: Values are adjusted mean (95% CI) (adjusted for age, BMI, infertility diagnosis, cycle type [except when only FSH cycles are included]). For the first 3 variables listed, only FSH cycles were included.

Karmon. Preconceptional TSH and IUI outcomes. Fertil Steril 2015.


Karmon et al, Fertil Steril, 2015

Ipotiroidismo/outcome PMA II livello

		Prola (ng/n		TS (µIU/	
	Number	Mean	SD	Mean	SD
Clinical pregnancy					
Yes	151	15.9	8.6	2.2	2.2
No	358	16.0	9.4	2.1	3.1
p value		0.78		0.21	
Detailed outcome					
Failed retrieval	50	14.8	9.4	1.8	1.2
Failed fertilization	22	17.2	8.2	5.1	11.6
Failed implantation	285	16.1	9.5	1.9	1.2
SAB	22	16.3	10.7	2.7	3.0
Liveborn	126	15.7	8.2	2.1	2.1
p value		0.721		0.004	
Fertilization rate					
<50%	141	16.6	8.6	2.5	4.7
≥50%	305	15.7	9.1	2.0	1.7
p value		0.23		0.05	

Cramer, 2003

Magri, 2013

ITALIAN CHAPTER

Table III Birth outco	me for 195 cycles in which a delivery ha	is occurred	
	TSH \leq 2.5 mIU/L (n = 150)	TSH >2.5 mIU/L (n = 45)	All births (n = 195)
Singleton	(n = 93)	(n = 32)	(n = 125)
Gestational age Birth weight	38.56 (32-41.5, 1.56)* 7.33 (4.25-9.81, 1.09) [†]	38.03 (27-41, 2.69)* 6.78 (2.06-9.00, 1.38) [†]	38.42 (27-41.5, 1.92) 7.19 (2.06-9.81, 1.19)
Twin	(n = 57)	(n = 13)	(n = 70)
Gestational age Birth weight	36.08 (30-40, 2.01)* 5.36 (2.75-7.69, 0.95) [‡]	34.65 (29-38.5, 3.66)* 4.83 (2.44-6.75, 1.42) [‡]	35.81 (29-40, 2.43) 5.26 (2.44-7.69, 1.07)

Data are presented as the mean with the range and standard deviation in parentheses. The gestational age is the number of weeks at delivery. Birth weight is presented in pounds.

* P = .012 for TSH ≤2.5 mIU/L compared with TSH >2.5 mIU/L.

$$P = .024.$$

[‡] P = .023.

Baker, 2006

Ipotiroidismo/outcome PMA II° livello

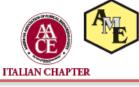


Table 2. Reproductive outcomes according to TSH concentrations

	All women	TSH ≤2.5 μIU/ml	TSH >2.5 μIU/ml	P value ^l
Number	158 (100)	120 (76)	38(24)	
Oocytes retrieved	6(6)	6(6)	6(6)	0.760
Oocytes 2PN	5(6)	5 (6)	5(5)	0.701
Embryos transferred	2(2)	2(2)	2(1)	0.536
Biochemical				
pregnancy	69 (43.7)	54 (45.0)	15 (39.5)	0.55
Clinical pregnancy	60 (38.0)	46 (38.3)	14 (36.8)	0.869
Pregnancy loss	5 (3.2)	5 (4.2)	0(0)	0.201
Live births	55 (34.8)	41 (34.2)	14 (36.8)	0.763

Mintziori, 2014

Data are given as medians with interquartile range in parentheses or as absolute numbers with percentages in parentheses.

 1 Baseline TSH ${\leq}2.5$ vs. ${>}2.5~\mu IU/$ ml.

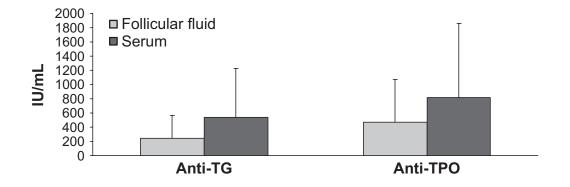
Chai, 2014

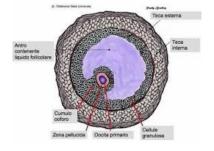
ura (naribu) el Lorier esarra naribulat dente	TSH < 2.5 mIU/l (n = 508)	$TSH \ge 2.5$ mIU/l (n = 119)	<i>P</i> -value	TSH < 3-5 mIU/1 (n = 586)	$TSH \ge 3.5$ mIU/l (n = 41)	<i>P</i> -value	TSH < 4-5 m[U/l (<i>n</i> = 602)	$TSH \ge 4.5$ mIU/l (n = 25)	P-value
Clinical pregnancy rate per cycle initiated, %	45-7	42-0	NS	45-1	43-9	NS	45-2	40-0	NS
Miscarriage rate, %	19-4	10-0	NS	18-2	11-1	NS	17-6	20-0	NS
Live birth rate per fresh cycle, %	35-4	35-3	NS	35-2	39-0	NS	35-5	32.0	NS

Autoimmunità tiroidea/infertilità

Autoimmunità aumenta il rischio di sviluppare ipotiroidismo, soprattutto in pazienti sottoposta a PMA (Koppe, 2008)

Autoimmunità tiroidea è espressione di autoimmunità generale


Associazione con Ab anti-cardiolipina (Toulis 2010) Associazione con endometriosi (Poppe 2002, Abalovich 2007, Gerhard 1991) Associazione con PCO (Janssen 2004, Kachuei 2011) Associazione con POF (Abalovich 2007)


Autoimmunità tiroidea/infertilità

Female Infertility Related to Thyroid Autoimmunity: The Ovarian Follicle Hypothesis

Patrizia Monteleone¹, Donatella Parrini¹, Pinuccia Faviana², Elena Carletti¹, Elena Casarosa¹, Alessia Uccelli¹, Vito Cela¹, Andrea Riccardo Genazzani¹, Paolo Giovanni Artini¹

¹Department of Reproductive Medicine and Child Development, Division of Obstetrics and Gynecology, University of Pisa, Pisa, Italy; ²Department of Surgery, Division of Pathology, University of Pisa, Pisa, Italy

Condivisione di Ag tra oocita e tiroide

Zona pellucida: bersaglio di AbTg, AbTPO

Roma, 9-12 novembre 2017

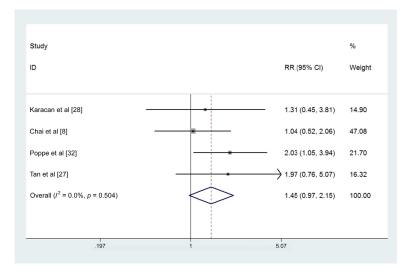
Autoimmunità tiroidea/infertilità

Roma, 9-12 novembre 2017

Human Reproduction Update Advance Access published June 20, 2016 Human Reproduction Update, pp. 1–16, 2016 doi:10.1093/humupd/dmw019

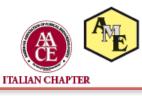
doi:10.1093/humupd/dmw019	9					
human reproduction update						
	The impact of thyroid	-				
	on IVF/ICSI outcome:	a systematic				
	review and meta-analy	ysis				
	Andrea Busnelli ^{1,2,*} , Alessio Paffoni ¹ , Lu and Edgardo Somigliana ¹	Outcomes	Results (1	TAI+ vs TAI- women)		Reasons for caution
		Number of oocytes retrieved	$ \longrightarrow $	No difference		
		Fertilization rate		No difference		Low number of studies
						Studies
		Implantation rate		No difference		
		•	_			Need for further
		Clinical pregnancy rate		No difference		evidence to rule
		•				out role of age
		Miscarriage rate		Increase in TAI+		and TSH
		+				
		Delivery rate		Decreased in TAI+	J	

Roma, 9-12 novembre 2017


Original Article

Effect of thyroid autoimmunity *per se* on assisted reproduction treatment outcomes: A meta-analysis

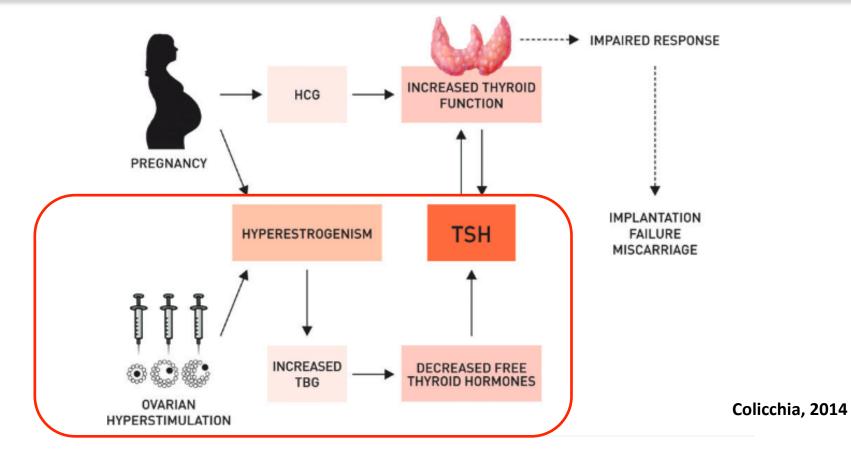
Hui He ^{a, b}, Shuang Jing ^{a, b}, Fei Gong ^{a, b, c}, Yue Qiu Tan ^{a, b, c}, Guang Xiu Lu ^{a, b, c}, Ge Lin ^{a, b, c, *}


% Study ID RR (95% CI) Weight Karacan et al [28] 0.87 (0.54, 1.41) 12.42 Chai et al [8] 0.98 (0.76, 1.26) 34.94 Poppe et al [32] 1.19 (0.81, 1.75) 11.44 Tan et al [27] 0.99 (0.77, 1.25) 41.19 Overall $(l^2 = 0.0\%, p = 0.765)$ 0.99 (0.85, 1.15) 100.00 .536 1.87

k

Clinical pregnancy rate

Miscarriage rate



Tiroide

PMA

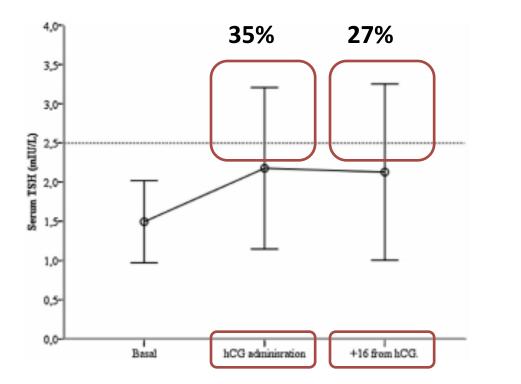
La stimolazione ovarica per IVF ha un impatto importante sull'omeostasi endocrina, in particolare sull'asse ipotalamo-ipofisi-tiroide

(Muller 2000; Poppe, 2004; Poppe 2005, Mintziori 2011; Gracia 2012; Reinblatt 2013)

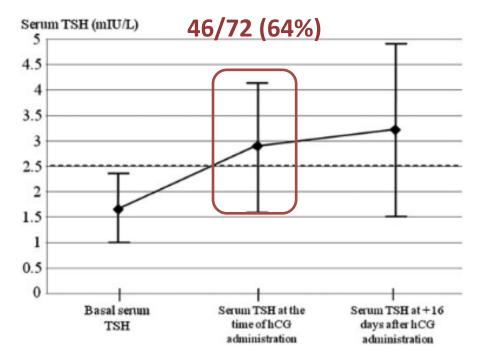
TABLE 1 Studies of thyroid function during assisted reproduction techniques.											
ID	First author, year (reference)	Setting, country	Study characteristic	OS protocol							
1.	Muller, 2000 (1)	Academic center, the Netherlands	Retrospective study	GnRH analog and hMG							
2.	Poppe, 2004 (2)	Academic center, Belgium	Prospective study First ART cycle	GnRH agonist and hMG or hrFSH							
3.	Poppe, 2005 (11)	Academic center, Belgium	Prospective study First ART cycle	GnRH agonist and hMG or hrFSH							
4.	Haller, 2006 (14)	Private center, Estonia	Prospective study	GnRH agonist (n = 7, 5.4%) or GnRH antagonist (n = 122,							

Aumento del TSH a livelli superiori rispetto al cut-off suggerito per primo trimestre di gravidanza (2,5 mU/L)

	7.	Monteleone, in press (13)	Academic center, Italy	Prospective study	GnRH-antagonist and hrFSH				
Γ	Note: hrFSH = human recombinant FSH.								
L	Mintzior	ri. Thyroid function during ova	rian stimulation. Fertil Steril 2011.						


Mintziori, 2011

Benaglia, 2014


Incidence of elevation of serum thyroid-stimulating hormone during controlled ovarian hyperstimulation for in vitro fertilization

Thyroid Axis Dysregulation During *In Vitro* Fertilization in Hypothyroid-Treated Patients

Busnelli, 2014

Clinical Study

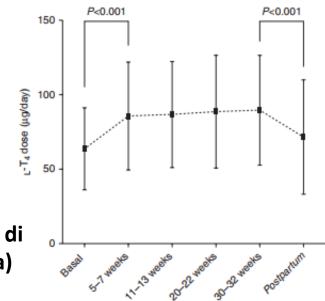
Levothyroxine dose adjustment in hypothyroid women achieving pregnancy through IVF

Andrea Busnelli^{1,2}, Guia Vannucchi¹, Alessio Paffoni¹, Sonia Faulisi^{1,2}, Laura Fugazzola^{1,2}, Luigi Fedele^{1,2} and Edgardo Somigliana¹

¹Infertility Unit, Fondazione Ca' Granda, Ospedale Maggiore Policlinico, Via M. Fanti, 6, 20122 Milan, Italy and ²Università degli Studi, Milan, Italy

A Busnelli and others

173:4


417-424

84% delle donne ipotiroidee sottoposte a IVF necessitano di incremento della posologia precocemente (5-7° settimana)

Levothyroxine adjustment in IVF

pregnancies

56% delle donne ipotiroidee con gravidanza spontanea necessitano di incremento della posologia precocemente

Terapia con LT4 e PMA

Levothyroxine treatment in thyroid peroxidase antibody-positive women undergoing assisted reproduction technologies: a prospective study

In Vitro Fertilization Pregnancy Rates in Levothyroxine-Treated Women With Hypothyroidism Negro 2005

RISULTATI NON DEFINITIVI

Effect of levothyroxine treatment on in vitro fertilization and pregnancy outcome in infertile women with subclinical hypothyroidism undergoing in vitro fertilization/intracytoplasmic sperm injection.

Kim 2011

Levothyroxine treatment and pregnancy outcome in women with subclinical hypothyroidism undergoing assisted reproduction technologies: systematic review and meta-analysis of RCTs.

Velkeniers 2013

Linee Guida 2017

2017 Suidelines of the American Thyroid Association for the Diagnosis and Management of Thyroid Disease During Pregnancy and the Postpartum

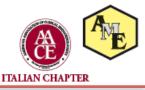
Roma, 9-12 novembre 2017

Erik K. Alexander,^{1,*} Elizabeth N. Pearce,^{2,*} Gregory A. Brent,³ Rosalind S. Brown,⁴ Herbert Chen,⁵ Chrysoula Dosiou,⁶ William A. Grobman,⁷ Peter Laurberg,^{8,†} John H. Lazarus,⁹ Susan J. Mandel,¹⁰ Robin P. Peeters,¹¹ and Scott Sullivan¹²

VI. THE IMPACT OF THYROID ILLNESS UPON INFERTILITY AND ASSISTED REPRODUCTION

RECOMMENDATION 16: Evaluation of serum TSH concentration is recommended for all women seeking care for infertility.

RECOMMENDATION 17: LT4 treatment is recommended for infertile women with overt hypothyroidism who desire pregnancy.


	Eutir/Ab-	Eutir/Ab+	lpo sub./Ab-	lpo sub./Ab+	Ipo concl.
NON-IVF	-	No LT-4 (r.19)	LT-4* (r.18)	LT-4* (r.18)	LT-4
IVF	-	LT-4 [§] (r.21)	LT-4 (r.20)	LT-4 (r.20)	LT-4

*Insufficient evidence exist to determine if LT4 therapy improves fertility. LT4 may be considered to prevent progression to more significant hypothyroidism once pregnancy is achieved.

[§]Insufficient evidence exists to determine whether LT4 therapy improves the success of pregnancy following ART in TPOAb-positive euthyroid women. However, administration of LT4 to TPOAb-positive euthyroid women undergoing ART may be considered given its potential benefits in comparison to its minimal risk.

RECOMMENDATION 24. In women who achieve pregnancy following controlled ovarian hyperstimulation, TSH elevations should be treated according to the recommendations outlined in Section VII. In nonpregnant women with mild TSH elevations following controlled ovarian stimulation, serum TSH measurements should be repeated in 2–4 weeks because levels may normalize.

Human Reproduction, pp. 1-7, 2017

doi:10.1093/humrep/dex240

human reproduction

OPINION

Routine serum thyroid-stimulating hormone testing—optimizing pre-conception health or generating toxic knowledge?

Abha Maheshwari^{1,*}, Priya Bhide², Jyotsna Pundir³, and Siladitya Bhattacharya⁴

GRAZIE !

g.vannucchi@auxologico.it