A New Clinical Presentation of Primary Hyperparathyroidism

Normocalcemic Primary Hyperparathyroidism ("Form Fruste" of an old disease)

Silverberg & Bilezikian et al. J Clin Endocrinol Metab 2003
“Normocalcemic PHPT”

- First coined by Wills et al. (1969)

 Wills MR, Pak CY, Hammond WG, Bartter FC.

 Normocalcemic primary hyperparathyroidism.

- Cited multiple series from 1950’s
- Mainly in patients with severe & recurrent renal stones disease
- Series obtained from “stone” clinics
- Patients were often intermittently hypercalcemic (which is typical of modern PHPT)
Normocalcemic PHPT
Definition

- The **total serum calcium** is normal, virtually “all the time”
- The **ionized serum calcium** is also normal

Silverberg & Bilezikian et al. J Clin Endocrinol Metab 2003
Patients with osteoporosis who had PTx 15/64 had “normocalcemic hyperparathyroidism”

- Only six had persistent normal serum calcium
- Ionized calcium elevated in 95% of values in these patients
Patients who had PTx

39/60 had “normocalcemic hyperparathyroidism”
- Only 16 had normal ionized serum calcium
- Ionized calcium elevated in 41% of values in these patients
Normocalcemic PHPT

sharpening the definition further exclude the following:

Any secondary causes for elevated PTH

✓ Vitamin D insufficiency (25-hydroxyvitamin D < 30 ng/ml)
✓ Renal insufficiency (GFR <60 ml/min)
✓ Medications that could alter calcium homeostasis
✓ Hypercalciuria
✓ Any other known metabolic bone disease
Prevalence of Vitamin D Insufficiency in an Adult Normal Population

M.-C. Chapuy¹, P. Preziosi², M. Maamer³, S. Arnaud¹, P. Galan², S. Hercberg² and P. J. Meunier¹

¹INSERM U. 403, Hôpital Edouard Herriot, Lyon; ²ISTNA/CNAM, Paris; and ³Laboratoire Innothéra, Arcueil, France

Fig. 1. Relationship between serum intact parathyroid hormone (iPTH) and 25-hydroxyvitamin D (25(OH)D) values in the whole population studied. For a 25(OH)D concentration higher than 78 nmol/l (31 ng/ml), there is a plateau level at 36 pg/ml for iPTH. When 25(OH)D values are lower than 78 nmol/l (31 ng/ml), the serum iPTH values begin to increase.
These studies are confounded by the lack of any prospective data that would track an individual’s PTH level as the 25-hydroxyvitamin D levels is increased from 20 to 30 ng/mL.

Example:
Individual with a “normal” PTH level of 40 pg/mL when the 25-hydroxyvitamin D level is 20 ng/mL might show reduction to a PTH level 25 pg/mL when the 25-hydroxyvitamin D level is raised to 30 ng/mL.
Normocalcemic Primary Hyperparathyroidism

Natalie E. Cusano, Shonni J. Silverberg, and John P. Bilezikian

Division of Endocrinology, Department of Medicine, College of Physicians & Surgeons, Columbia University, New York, NY, USA

To be confident in the diagnosis of normocalcemic primary hyperparathyroidism, it would seem advisable to:

Ensure that the 25-hydroxyvitamin D level is greater than 30 ng/ml

Normocalcemic pts with high PTH levels will become hypercalcemic when 25- hydroxyvitamin D levels are raised to higher than 30 ng/ml

The correct diagnosis is **traditional hypercalcemic primary hyperparathyroidism** that is masked by the vitamin D deficiency
Normocalcemic PHPT sharpening the definition further exclude the following:

Any secondary causes for elevated PTH

- Vitamin D insufficiency (25-hydroxyvitamin D < 30 ng/ml)
- Renal insufficiency (GFR < 60 ml/min)
- Medications that could alter calcium homeostasis
- Hypercalciuria
- Any other known metabolic bone disease
Relationship between PTH and creatinine clearance

PTH rises out of the normal range until the creatinine clearance fell to less than 60 ml/min

Fajtova et al. Calcif Tissue Int 1995
GFR <60 ml is associated with increased parameters of bone resorption

<table>
<thead>
<tr>
<th>Structural indices</th>
<th>GFR <60 (n = 5)</th>
<th>GFR ≥60 (n = 25)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cortical width (µm)</td>
<td>695 ± 184</td>
<td>626 ± 209</td>
<td>0.51</td>
</tr>
<tr>
<td>Cancellous bone volume (%; BV/TV)</td>
<td>22.1 ± 6.2</td>
<td>23.2 ± 7.0</td>
<td>0.75</td>
</tr>
<tr>
<td>Trabecular number (1/mm)</td>
<td>1.82 ± 0.23</td>
<td>1.93 ± 0.42</td>
<td>0.61</td>
</tr>
<tr>
<td>Trabecular separation (µm)</td>
<td>435 ± 92</td>
<td>424 ± 134</td>
<td>0.88</td>
</tr>
<tr>
<td>Trabecular width (µm)</td>
<td>121 ± 35</td>
<td>119 ± 25</td>
<td>0.89</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Remodeling indices</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Osteoid surface (%)</td>
<td>25.2 ± 12.7</td>
<td>29.3 ± 12.6</td>
<td>0.52</td>
</tr>
<tr>
<td>Osteoid width (no. lamellae)</td>
<td>13.3 ± 1.3</td>
<td>13.5 ± 3.1</td>
<td>0.88</td>
</tr>
<tr>
<td>Mineralization lag time (d)</td>
<td>34 ± 14</td>
<td>50 ± 34</td>
<td>0.59</td>
</tr>
<tr>
<td>Mineralizing surface (%)</td>
<td>19.0 ± 11.3</td>
<td>19.3 ± 10.3</td>
<td>0.95</td>
</tr>
<tr>
<td>Mineral apposition rate (µm/d)</td>
<td>0.65 ± 0.09</td>
<td>0.63 ± 0.12</td>
<td>0.69</td>
</tr>
<tr>
<td>Bone formation rate (µm³/µm² · d)</td>
<td>0.13 ± 0.09</td>
<td>0.11 ± 0.06</td>
<td>0.63</td>
</tr>
<tr>
<td>Eroded surface (%)</td>
<td>12.0 ± 4.2</td>
<td>8.3 ± 2.7</td>
<td>0.02a</td>
</tr>
<tr>
<td>Activation frequency (cycles/yr)</td>
<td>0.62 ± 0.15</td>
<td>1.07 ± 0.62</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Values represent mean ± sd. BV/TV, Bone volume/tissue volume.

a Statistically significant when controlling for multiple comparisons.
Normocalcemic PHPT
sharpening the definition further
exclude the following:

Any secondary causes for elevated PTH

✔ Vitamin D insufficiency (25-hydroxyvitamin D < 30 ng/ml)

✔ Renal insufficiency (GFR <60 ml/min)

✔ Medications that could alter calcium homeostasis

✔ Hypercalciuria

✔ Any other known metabolic bone disease
Thiazide-induced Parathyroid Stimulation

By Jack R. Pickleman, Francis H. Straus II, Marvin Forland and Edward Paloyan

Mitabolism. Vol. 18, No. 10 (October) 1969

Serum Ca and P in dogs on increasing doses of HCT

Parathyroid from thiazide-fed dog
Note area of less dense cells at the top

Bulging, granular cytoplasm and vacuolar change
Lithium Treatment Increases Intact and Midregion Parathyroid Hormone and Parathyroid Volume*

LAWRENCE E. MALLETTE, KHALIL KHOURI, HIRAM ZENGOTITA, BRUCE W. HOLLIS, AND SRINI MALINI

*J Clin Endocrinol Metab 68: 654, 1989

Long term lithium treatment increases circulating PTH and causes parathyroid enlargement
Normocalcemic PHPT sharpening the definition further exclude the following:

Any secondary causes for elevated PTH

- Vitamin D insufficiency (25-hydroxyvitamin D < 30 ng/ml)
- Renal insufficiency (GFR < 60 ml/min)
- Medications that could alter calcium homeostasis
- Hypercalciuria
- Any other known metabolic bone disease
Evidence for Secondary Hyperparathyroidism in Idiopathic Hypercalciuria

Fredric L. Coe, Janet M. Canterbury, John J. Firpo, and Eric Reiss

The Journal of Clinical Investigation Volume 52 January 1973
Normocalcemic PHPT

sharpening the definition further
exclude the following:

Any secondary causes for elevated PTH

✓ Vitamin D insufficiency (25-hydroxyvitamin D < 30 ng/ml)
✓ Renal insufficiency (GFR <60 ml/min)
✓ Medications that could alter calcium homeostasis
✓ Hypercalciuria
✓ Any other known metabolic bone disease
Gastrointestinal disorders associated with calcium malabsorption

Role of calcium malabsorption in the development of secondary hyperparathyroidism after biliopancreatic diversion

J.A. Balsa¹, J.I. Botella-Carretero¹, R. Peromingo², I. Zamarrón¹, F. Arrieta¹, T. Muñoz-Malo³, and C. Vázquez¹

¹Department of Endocrinology and Clinical Nutrition; ²Department of Surgery; ³Departement of Biochemistry, Ramón y Cajal Hospital, Madrid, Spain

JOURNAL OF BONE AND MINERAL RESEARCH
Volume 14, Number 4, 1999
Blackwell Science, Inc.
© 1999 American Society for Bone and Mineral Research

Bone Loss in Celiac Disease Is Related to Secondary Hyperparathyroidism*

PETER L. SELBY,¹ MICHAEL DAVIES,¹ JUDITH E. ADAMS,² and E. BARBARA MAWER¹