ame news

nr. 75 - dicembre 2014

MALATTIE AUTOIMMUNI TIROIDEE: VECCHI E NUOVI *PLAYERS*

Responsabile Editoriale Vincenzo Toscano

Le malattie autoimmuni della tiroide (AITD) sono patologie multifattoriali che includono uno spettro di condizioni: ai due estremi sono **l'ipotiroidismo di Hashimoto** (HH) e l'**ipertiroidismo di Graves** (GD), con **numerosi quadri intermedi** con funzione ghiandolare intermittente o addirittura oscillante fra ipo e ipertiroidismo. Le differenze funzionali sono riconducibili non solo a tipo e titolo degli auto-anticorpi (TPO-Ab e Tg-Ab più frequentemente presenti nell'HH, TR-Ab nel GD), ma anche a geni di suscettibilità e a fattori ambientali.

Lo stato dell'arte sull'argomento è l'oggetto di una recente revisione (1), in cui il quadro riassuntivo delle conoscenze viene analizzato per singoli punti.

Prevalenza delle AITD nel sesso femminile

Un ruolo significativo ha quasi certamente il **fenomeno epigenetico** di una distorta inattivazione di uno dei due cromosomi X della donna (2). I tessuti delle donne possono essere considerati dei mosaici, nei quali alcune cellule contengono il cromosoma X di origine materna e altre quello di origine paterna; quando lo stesso cromosoma X è inattivato in più dell'80% delle cellule, potrebbe essere indotta la risposta autoimmune verso antigeni X-correlati. Potrebbe avere un ruolo anche il **microchimerismo fetale**, cioè il passaggio di cellule fetali nella circolazione materna durante il primo trimestre di gravidanza, la cui persistenza nei tessuti materni potrebbe innescare la risposta immunitaria (3); i risultati però non possono essere considerati definitivi, anche perché non sempre è stata documentata una relazione diretta tra numero di gravidanze e frequenza e/o concentrazione di auto-anticorpi e/o incidenza di AITD.

Fattori genetici

Hanno un ruolo rilevante nella patogenesi di queste malattie: secondo studi sui gemelli **contribuiscono per il 70%** all'insorgenza della malattia, lasciando solo il 30% al ruolo dei fattori ambientali (4).

Fattori ambientali nuovi e vecchi

Fumo: è un fattore di rischio ben noto per GD e oftalmopatia correlata, che si riduce significativamente alcuni anni dopo l'astensione dal fumo. Recenti evidenze hanno dimostrato che il fumo invece protegge dall'insorgenza di HH.

Alcool: gli effetti sul sistema immunitario sono complessi e non ben chiariti. Il consumo moderato sembra proteggere sia dall'insorgenza di HH che di GD; l'effetto protettivo è noto anche su altre malattie autoimmuni (diabete tipo 1, artrite reumatoide).

Selenio: bassi livelli sono associati a deficit del sistema immunitario, per cui un deficit di selenio potrebbe promuovere o facilitare l'insorgenza di AITD. L'utilità di una supplementazione farmacologica con selenio è stata finora dimostrata solo nella prevenzione della progressione dell'oftalmopatia di Graves e nelle tiroiditi post-partum (5,6).

Vitamina D: anche se la sua carenza rappresenta un fattore di rischio per diverse patologie autoimmuni (diabete tipo 1, artrite reumatoide, sclerosi multipla, ...), a oggi non è stata identificata come fattore di rischio per AITD.

lodio: la supplementazione nelle aree iodo-carenti aumenta la positività sia di TPO-Ab che di Tg-Ab, con conseguente modesto incremento dei casi di HH; ciò può essere correlato allo smascheramento di un epitopo nascosto della Tg (7).

Stress: è da sempre ritenuto un fattore di stimolo per l'insorgenza di GD, anche se il dato è indiziario e non ha riscontro scientifico; lo stress non sembra invece favorire l'insorgenza di HH.

Infezioni: alcune sono state chiamate in causa nella patogenesi delle AITD, ma HCV **s**embra l'unico agente infettante chiaramente associato ad AITD, mentre sono contrastanti i dati relativi a *Yersinia Enterocolitica*.

Farmaci: numerosi sembrano poter attivare le AITD con meccanismi diversi; fra questi vi sono l'interferone (più spesso per HH), l'alemtuzumab o le terapie anti-retrovirali (più spesso per GD).

ame news

dicembre 2014

Commento

Questo lavoro permette di comprendere meglio la complessità delle AITD e offre un quadro completo delle attuali conoscenze sulla loro patogenesi. Tuttavia **non fornisce** c**onclusioni pratiche, per** cui non vi sono ancora elementi sufficienti per **individuare i soggetti a rischio** di AITD e indicare **le modalità di prevenzione**.

Bibliografia

- 1. Effraimidis G, Wiersinga WM. Mechanisms in endocrinology: autoimmune thyroid disease: old and new players. Eur J Endocrinol 2014, 170: R241-52.
- 2. Simmonds MJ, Kavvoura FK, Brand OJ, et al. Skewed X chromosome inactivation and female preponderance in autoimmune thyroid disease: an association study and meta-analysis. J Clin Endocrinol Metab 2014, 99: E127–31.
- 3. Lepez T, Vandewoestyne M, Hussain S, et al. Fetal microchimeric cells in blood of women with an autoimmune thyroid disease. PLoS ONE <u>2011</u>, 6: e29646.
- 4. Brix TH, Hegedus L. Twin studies as a model for exploring the aetiology of autoimmune thyroid disease. Clin Endocrinol 2012, 76: 457–64.
- 5. Marcocci M, Kahaly GJ, Krassas GE, et al. Selenium and the course of mild Graves' orbitopathy. N Engl J Med 2011, 364: 1920–31.
- 6. Negro R, Greco G, Mangieri T, et al. The influence of selenium supplementation on postpartum thyroid status in pregnant women with thyroid peroxidase autoantibodies. J Clin Endocrinol Metab <u>2007</u>, <u>92</u>: 1263–8.
- 7. Latrofa F, Fiore E, Rago T, et al. Iodine contributes to thyroid autoimmunity in humans by unmasking a cryptic epitope on thyroglobulin. J Clin Endocrinol Metab <u>2013</u>, <u>98</u>: <u>E1768</u>–74.
- 8. Betterle C, Presotto F. Tiroiditi autoimmuni. Endowiki.
- 9. Guglielmi R. Morbo di Graves. Endowiki.